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Abstract—An investigation into the behavior of unsymmetrically laminated anisotropic plates
is carried out. Using the basic assumptions of linear plate theory and strain-displacement
relations modified to account for small initial curvature, energy formulations are established
and the Ritz method utilized to obtain solutions for static deflections and natural frequencies
of vibration. The boundary condition with particular inplane restraints and the particular
stacking arrangement are shown to have important effects on plate response when bending—
extensional coupling is present. Small initial curvature is shown to greatly increase natural
frequencies and may obscure the effects of bending-extensional coupling due to nonsymmetrical
layering. The increase in lateral stiffness due to curvature is also shown to depend heavily on
fiber orientation, orthotropicity and boundary conditions.

NOTATION
Ay, Biy, Dy constitutive coefficients defined by equation (5)
a, b plate dimensions along x, y axes respectively

B inertia matrix defined by equation (19)
Ey;, Fiy, Gy;  coefficients for displacements #°, v° and w respectively
E ., Eys principal Young’s moduli in plate 1 and 2 directions respectively °

f load vector defined by equation (16)
G, shear moduli in 1-2 plane
hy distance from midplane to lamina boundary as shown in Fig. 1
h total plate thickness
K stiffness matrix defined by equation (13)
M, M, bending moments per unit length on plate sections perpendicular to x and y axes respectively
N number of layers in plate
Ny, N, normal forces per unit length on plate sections perpendicular to the x and y axes respectively
Ny, shearing force per unit length on plate section perpendicular to the x or y axes
Q potential energy due to transverse loading
Qi constitutive coefficients for orthotropic lamina
q intensity of transverse loading
T kinetic energy
U strain energy
u®, v° tangential displacements of the midplane in the x and y directions respectively
w displacement normal to the midplane
wo initial shape of the plate
x displacement vector given by equation (15)
Vxy shearing strain
maximum amount of initial curvature as shown in Fig. 2
&, &y normal strains in x and y directions respectively

0., 001, 8,0 displacement functions for 4°, v® and w displacements respectively, which satisfy geometric
boundary conditions at y=0and y =5
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A frequency parameter

Vi Poisson’s ratio

11 total system energy

P mass per unit volume

Oy, Oy normal stress components in x and y directions respectively
Txy shearing stress

Sut> bot, Pur  displacement functions for u°, v° and w displacements respectively which satisfy geometric
boundary conditions at x =0 and x=a
w natural frequency.

INTRODUCTION

In recent years there has been a significant increase in the interest given fiber reinforced
laminated composite materials due mainly to their high strength-to-weight ratios and to the
degree of design flexibility their usage permits. For cases in which the individual laminae are
unsymmetrically layered about the geometric midplane in either material properties or
principal axis orientation, significant departure from homogeneous plate behavior results.
In this regard Reissner and Stavsky([1] are credited with first demonstrating the existence of a
linear coupling between the transverse bending and inplane stretching modes not found in
homogeneous media. Later Yang et al.[2] formulated a laminated plate theory again showing
the existence of bending—extensional coupling for a more general class of laminates, how-
ever, no solutions were presented for the nonsymmetrical case.

Whitney and Leissa[3] extended composite material analysis by a derivation resulting in
three equations of motion cast in terms of the three orthogonal displacements. The boundary
conditions assumed so as to obtain closed form solutions were hinges allowing inplane
displacements tangent to the boundary for the angle-ply case and inplane displacements
normal to the boundary for the cross-ply case. Also investigated by these authors[4] was a
simply-supported plate with no inplane restraints in either tangential or normal directions.
A Fourier series technique was used to approximately solve the stress function and displace-
ment equations. In both these investigations, solutions for angle-ply and cross-ply configura-
tions showed that the presence of coupling reduces plate stiffness which in turn increases
static deflections and reduces natural frequencies and critical loads. Coupling was shown to
be a function of the number of layers and their degree of anistropy. Whitney’s examination
[5] of fully restrained layered plates, using a Fourier series technique to approximately solve
the displacement equations showed the same qualitative results regarding the nature and
causes of coupling.

In this paper the behavior of the unsymmetric angle-ply and cross-ply plates with and
without small initial curvature is investigated. As a result of bending—extensional coupling,
the usual simply supported and clamped boundaries must be more explicitly identified by
prescribing either inplane displacements or forces. Hence four types of edge conditions are
considered for both angle-ply and cross-ply configurations, namely three hinge conditions
and a fully restrained condition, so as to ascertain the effects of this parameter on plate
response. As the results will show, a wide variation in the severity of bending-extensional
coupling occurs depending on the particular boundary condition (the type of inplane res-
traint is critical) and ply configuration. Bending-extensional coupling due to the presence of
initial curvature, in contrast to that due to unsymmetric layering, produces a stiffening of
the plate. The counteracting effects from the two coupling sources is investigated here to
determine the ranges of predominance and the combined effect on natural frequencies.
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Results show that a very slight amount of curvature may produce large frequency increases
which tend to predominate over the bending—extensional coupling effects from nonsym-
metry.

FORMULATION OF THE GOVERNING EQUATIONS

A conventional x, y, z coordinate system, as shown in Fig. 1, is used to identify the plate
geometry, with distances to the individual laminae being measured from the geometrical
midplane. The Ritz method requires the total system energy expressed in terms of the dis-
placements. To this end the strain energy due to bending for the plane stress situation
assumed here is

U= L (0cx + 0,6, + Toy V) V- )

Fig. 1. Single constant curvature representation and lamina indentification.

The usual assumptions of linear shallow shell theory[6] leads to the following strain—
displacement expressions

__,,0
Ex=1U x T WWh e — ZW 4y
— 0 _ —
&=V WWo yy = ZW 4y (2)

ey =u’ ,+ 0% — 2wwg o, — 2zw

where 4° and v° are the tangential displacements of the midplane in the x and y directions
respectively, w is the displacement normal to the midplane in the z direction and w, repre-
sents the initial shape of the plate. Commas denote differentiation with respect to the
subscripted variables.
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For the kth orthotropic laminae of the plate, the generalized Hooke’s law is expressed as

¥ [ 0 0,
Gy k) = Qu(k) sz( ) st( ) &y 3)
Txy( ) Qm( ) Qze(k) Qse(k) Pxy

where the ;% are related to the familiar engineering constants as shown n [7]. Separating
(1) into piecewise integration through the thickness of the n-layered plate and using relations
(2) and (3), the expression for strain energy due to bending in terms of displacements #°, v°
and w and the initial shape, w,, is given by

1 02 0P o 3
U= [ | 1400 = wwo 00

+ 2‘412(“0,;: - wwO,xx)(DQ,y - ww(),yy)

+ 2/116(7’10,:17 - WWO,x.x)(uo,y + vo,x - 2ww0,xy)

+ A55(0°, — wwg ,,)°

+24,56(0° , — wwo )W, + 00, — 2wwg L)

+ Age(yu® , +1°, — 2wwg )

- 2Bl l(uo,x - wwo,xx)w,xx

- 2312{(u0,x - ww(),xx)w,yy + (vo,y - wwO,yy)w,xx]

- 2316{2(140,3: - wwO,xx)w,xy + (uo,y + vo,x - zwwo,xy)w,xx]
= 2B,,(®° , — wwo ,, )W ,,

= 2B,6[2(0° , — wwo W o + (u°, + 00, — 2wwg o Iw ]
— 4Bge(u® , + 0, — 2wwy W,

+ I)IIW2 S XX + 21)12 w,xx w,yy + 4D16 w,xx w,xy

+ Dy, w? ,, + 4D, w W, + 4Dgew?  }dx dy (4)

where the limits a and b are the plate dimensions in the x and y directions respectively, and
where

LS O
(4;;, Bijs Dip) = 3. f 0,%0, z, 2% dz. &)
k=1%h
The contribution to the total system energy from a transversely applied load is equal to
a b
= — wdx d 6
Q fO fo q y ©)

where Q is the potential energy and ¢(x, y) is the load per unit area. The kinetic energy 7, is
given by

_I @b h 0 2 0 2 2 2z dxd
T=5 [ ] Al 07 + % 0 + (w,] dx dy )

where p is the mass per unit volume and 4 is the total plate thickness.

In order to employ the Ritz procedure, use must be made of either the theorem of
stationary potential energy for static analysis or Hamilton’s principle for dynamic analysis,
which for a conservative system are given respectively by

U+9)=0 )
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and
MU~ T)=0. 9

In addition, the functions assumed for the displacement will take the following form

=

W= ‘21 Z Eij¢,i(x)0,,»)
u’ = 251 2’1 Fij ¢ui(x)0,(y)
= 3 Gy a0 () (10)

where ¢(x) and 6(y) are suitable functions satisfying the geometric boundary conditions
along x =0, g and y = 0, b respectively, and E;;, F;; and G,; are undetermined coefficients.

Designating the total system energy as I, then since IT = IT(x°, v°, w) and 4°, v° and w are
functions of the undetermined coefficients E;;, F;, and G;;, the variational problem may be
replaced by the equivalent problem of finding the minimum of IT with respect to the coeffi-
cients. Accordingly, we may write

o1l

U —— | 11
HEyr, Firs Giy) (1

wherek=1,...,mand /=1, ..., n. Assume for the moment that IT is composed of all the
energy terms considered, i.e. I1 = U + Q — T noting that for the static case T= 0 and for
the free vibration case Q = 0. If expressions (4, 6, 7 and 10) are now substituted into
equation (11) and the differentiation carried out, there results a systemof m-n+p-g +r-s
algebraic equations in the coefficients E,,;, Fy;, and Gy,. For the static deflection problem,
these equations may be written as

[KKx} ={/} (12)

where K is the stiffness matrix given by

-

11, el 12 ... g2 13 ... x13
Kiti1 " Kanin Kitnn Konty  Kii11- K

mnll

11 12, ., x12 13 ,..x13
Kmnmn Kl 1mn Kmnmn Kl 1mn Kmnmn

22 22 23 23
Kllll Kmnll K1111 Kmnll

[K] = symmetric

(13)

22 23 ... K23
Kmnmn Kllmn K

mnmn

33 ... 133
Kiin--K

mnl1

K33

L mnmn
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For a single constant curvature of quadratic representation
wo = 46(x/a — x%/a?) (14)

where 0 represents the maximum initial rise, the elements of K are given in the Appendix.
The displacement vector x is given by

{x}T:{Eu,Elz--w wns F11 Fiay ooy By Gip, Gray vy Gt (15)

where E;;, F;; and G;; are the displacement coefficients of equation (10). The load vector fis
given by
{f}T:{flhﬁZ?""fmn’oao"",o} (16)

where
a .b
Ju=[ [ abuibidxdy. (17
0v0

The free vibration problem may be written as
[B~'K — M]{x} = {0} (18)

where B is the diagonal inertia matrix given by

[B] = anfob Gr1P010,10,1 dx dy, ... ,f:fob Brom Do O Oro dx A,
f: fob burbunbunbyy dxdy, ..., f: f: Bum Dun Burn O A d,

01 badatnta xar, ... [ bbbt dx ay] a9

I is the identity matrix and A = phw? where  is the natural frequency.

It can be observed from expressions (13) and (15) that the submatrices K/ have an im-
portant physical interpretation. Bending—extensional coupling arising from the presence of
initial curvature and/or unsymmetrical layering of the laminae is represented by the off-
diagonal submatrices K'2, K!3 and K?3. Specifically K'? represents coupling between the
u° and w displacements, K'3 represents coupling between v° and w and K23 represents
coupling between «° and v°. The amount of coupling then depends on the magnitude of the
elements of these submatrices which, by the formulations in the Appendix, are shown to be
functions of the constitutive coefficients 4;; and B,;, the amount of curvature é and the
particular choice of the functions ¢(x) and 8(y).

i

BOUNDARY CONDITIONS AND DISPLACEMENT FUNCTIONS

The four boundary conditions are now specified and in addition, functions will be chosen
so as to model the displacements in accordance with equation (10). The first boundary
assumed is designated HFT for hinge-free-tangential in which we have

,=0 at x=0,a (20)
=0 at y=0,0b
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and for which the following displacement functions are assumed

¢, = ¢,; = sin inx/a, ¢,; = cos inx/a (21
0,,; = 0,; = sin jry/b, 6,; = cos jry/b.

The second boundary, designated HFN for hinge-free-normal, is described by

w=1’=M,=N,=0 at x=0,a 22)
w=u’=M,=N,=0 at y=0,b

for which the following functions are assumed

Pwi = O,; = sin inx/a, ¢,; = cos inx/a (23)
8,; = 0,; = sin jny/b, 8,; = cos jny/b.

The third boundary, designated HR for hinge-restrained, is described by

w=u’=0"=M,=0 at x=0,a (24)
w=u’=1'=M,=0 at y=0,b

for which the following displacement functions are assumed

¢wi = d)ui = ()bvi = Sin inx/a (25)
0,; =0, =0,;=sinjny/b.

The fourth boundary, designated CL for clamped, is described by

w=w,=u’=1"=0 at x=0,a (26)
w=w,=u

for which the following displacement functions are assumed

¢,,; = cosh B;x — cos B, x — a,(sinh f;x — sin f;x)

b, = ¢, = sin inxfa 27
f,;=cosh ;y —cos B,y — a(sinh B,y — sin f; y)

0,; = 0,, = sinjny/b

where o and f are characteristic functions corresponding to the mode shapes of a vibrating
beam and tabulated in[8]. Similar functions were used to study the free vibration of flat,
clamped anisotropic plates inf9].

ACCURACY AND CONVERGENCE

As the number of terms in the assumed displacement function series is increased, the Ritz
method will generate solutions which will in the limit converge to the exact solution. An
important question then is what degree of convergence has been achieved for any given
number of terms. As previously noted, boundary conditions (20) are exactly satisfied by (21)
for the angle-ply configuration, and boundary conditions (22) are exactly satisfied by (23)
for the cross-ply configuration. These results have been formulated in[3] and served as
excellent checks on the accuracy of the Ritz method results. Five term displacement function
series, l.e. m = n =p =g =r = s = 5 in expressions (10), were assumed and agreement was
shown to be excellent, the greatest difference being one digit in the fourth decimal place.

The fundamental frequency of a CL two-layered angle-ply was compared to the results
given by Whitney[5] and the largest difference between the two for any fiber angle was two
digits in the third decimal place. Since the Fourier series method employed by Whitney was
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not exact, the very similar results should lend credibility to both results. Curved plate
results were checked with isotropic plate results from the literature[10] and agreement for
the four lowest frequencies was to a minimum of three significant figures. Acceptable
convergence of solutions, investigated by increasing the number of terms in the displacement
function series and observing the asymptotic nature of the results, was achieved for both
frequency and static deflection cases. The worst case occurred for the two-layered CL
boundary solution in which the fundamental frequency converged to within 0-40 per cent
and the fourth lowest frequency to within 3-3 per cent. Static deflection convergence for this
case was to within 1-2 and 0-50 per cent for the two-layered and infinite-layered cases
respectively.

DISCUSSION AND RESULTS

The effect of boundary conditions on the stiffness of flat angle-ply and cross-ply composites
is shown in Figs. 2 and 3 respectively. Note that the filament angle 8 is measured from the x
axis in all the cases presented. Clearly the type of boundary condition, and in particular the
type of inplane restraint for the three hinge cases, plays a significant role in the determination
of plate behavior when bending-extensional coupling is present. In addition there are
pronounced differences in behavior between the cross-ply and angle-ply configurations
under identical boundary conditions. This is indicated in Figs. 2 and 3 by the reversal of
relative positions for the HFN and HFT cases in so far as the degree of stiffness present. For

008 . . T T
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003 " HET HR, HFN,
N~ oo

.002

.00l

i
Ooo 10° 20° 30° 40° 50

Fig. 2. Maximum deflection as a function of fiber orientation and boundary conditions for a
square angle-ply plate under uniform transverse loading (E,;/E;> = 40, G,2/E2z = 1,v,2 = 0-25,
N = no. of layers).
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Fig. 3. Maximum deflection as a function of the degree of anisotropy and boundary condi-
tions for a square cross-ply plate under uniform transverse loading (G, 2/E;> = 0:50, v,, = 0-25,
N = no. of layers).

example, Fig. 2 shows that for an angle-ply, the HFT two-layered case is the least stiff for
any non-zero 6, indicating a large degree of bending—extensional couplingis present. Figure 3,
however, shows that for a cross-ply, the HFT two-layered case is the stiffest for any degree
of orthotropicity, and in fact differs only slightly from the N — oo case in which bending-
extensional coupling is not present. Note is made of the fact that all three hinge boundary
conditions produce the same results for the infinite-layered solution. This results from the
fact that the only difference 1n these three conditions is in the inplane displacements allowed
along the boundary. For the infinite-layered case the bending and extensional modes are
uncoupled and as a result the solution to the bending problem requires only the restraints on
the transverse displacement, and these being equal for all three hinges, the infinite-layered
solutions coincide.

Prior to this investigation it has been suggested by Whitney and Leissa[4] and by Whitney
[5] that the solution to coupled plate problems may be relatively insensitive to the type of
inplane boundary conditions. Their findings suggest the use of the so called “reduced
bending stiffness method ™, which in effect neglects inplane conditions, as a viable means
of solution for cross-ply plates, while they note some discrepancy in results for certain
orientations of angle-ply plates. As results here show, however, solutions are indeed sensitive
to inplane boundary conditions for both cross-ply and angle-ply configurations and, as a
result, the use of the reduced bending stiffness method is discouraged.
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When a transverse displacement occurs in an initially curved plate, the greatest stretching
occurs in the circumferential direction. If normal inplane displacements are precluded
at the boundary, as in the HFT, HR and CL cases, there results an increase in stiffness and
hence in natural frequencies. Figure 4 shows a comparison of the effect small curvature has
on natural frequency for the HFT and HFN cases. For an equivalent flat plate both the
infinite-layered cases start at a nondimensional frequency of approx 19 at § =0° gotoa
maximum of approx 25 at § = 45° and return symmetrically to 19 at § = 90°. In the presence
of small initial curvature (a rise to length ratio of 0-01) the HFT case shows a great increase in
frequency when 8 = 0° since in this orientation the greatest amount of stretching occurs in

55 T T T T

wal\[p/ E,,h°

i
40° 60° 80° 100
2]

Fig. 4. Fundamental frequency as a function of fiber orientation and boundary conditions for a
square angle-ply plate with small initial curvature E,{/E,> =40, G 3/Esz =1, vy = 025,
8/a = 0-01, N = no. of layers).

the direction of maximum stiffness and moreover the normal inplane displacements are
resirained. For the HFN boundary condition, since normal inplane displacements are
allowed, the effect of curvature is considerably lessened.

Figure 5 shows the effect of small initial curvature on the fundamental frequency for the
limiting case of infinite layers for each of the four boundary conditions considered. In the
presence of curvature these solutions no longer coincide as they did for the flat plate case
since while coupling due to non-symmetrical layering is eliminated, there is additional
coupling due to the curvature and hence the boundary condition affects plate response. Of
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Fig. 5. Fundamental frequency as a function of initial curvature and boundary conditions for a
square 45° angle-ply plate (E,,/E,2 = 40, G12/E22 = 1, v,2 = 025, N - o).

the three hinge boundaries considered, the HFN case since it alone allows inplane motion
normal to the boundary, shows the least stiffening effect due to the curvature. Interestingly,
the CL case appears less affected than the remaining two hinge cases.

When the plate is flat the difference between the two-layered and infinite-layered solutions
for any boundary condition is due to the amount of bending-stretching coupling present in
the two-layered case, its effect being a reduction in stiffness and hence in frequency. In-
troducing small curvature produces a frequency change which, as shown in Fig. 6, for an
angle-ply can obscure and in fact completely predominate the coupling effects due to non-
symmetrical layering. As the curvature increases, this effect becomes progressively more
pronounced. One may be inclined to conclude that for plates of greater curvature than
d/a = 0-02 the effect on stiffness due to coupling from nonsymmetrical layering is negligible.
This may indeed be the case, and numerical results for §/a in the range of 0-05 to 0-10 could
substantiate this. However, this converging behavior was not noted for a cross-ply with
d/a < 0-02 since the second mode frequency intersected the first mode within this range and
produced a larger frequency difference at d/a = 0-02 than at /a = 0.

Taking all the results together it should be clear that the amount of stiffening due to
curvature will depend heavily on fiber orientation, orthotropicity and boundary conditions.
Results were also obtained for higher mode frequencies and are given in{11]. Generally they
show trends similar to the fundamental although the effect of curvature is less pronounced.
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1 1 1l 1
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0 .004 .008 .0I12 .06 .020

8/a

Fig. 6. Fundamental frequency as a function of initial curvature and number of layers for a
square 45° angle-ply plate (E;,/E2; =40, G{3/E2; = 1, vy2 = 025, HFT boundary condition).

REFERENCES

E. Reissner and Y. Stavsky, J. Appl. Mech. 28, 402 (1961).
P. C. Yang, C. H. Norris and Y. Stavsky, Int. J. Solids Struct. 2, 665 (1966).
J. M. Whitney and A. Leissa, J. Appl. Mech. 36, 261 (1969).

J. M. Whitney and A. Leissa, AI4A4 Jour. 8, 28 (1970).
J.M.
K.
(

Whitney, J. Comp. Mat. 4, 192 (1970).
M. Mushtari and K. Z. Galimov, Non-Linear Theory of Thin Elastic Shells, p. 152. Tatkingoizdat
57

FUuh W=

—

957).
Ashton and J. M. Whitney, Theory of Laminated Plates. Technomic Publishing Co. (1970).

J. E.
D. Young and R. P. Felgar, Publication No. 4913. University of Texas (1949).
C. W. Bert and B. L. Mayberry, J. Comp. Mat. 3, 282 (1969).
J. J. Webster, J. Int. J. Mech. Sci. 10, 571 (1968).

R Fortier, Ph.D. dissertation, Northeastern University, Boston, Mass. (1972).

—_—
=S S

. C.

A6cTpakT — TIpUBOAMTCH HCCNENOBAHME MOBENSHHUS HECUMMETPHYECKHX CIIOHUCTBIX aHH30-
TPOITHBIX TIACTHHOK. VICIONIB3Yst OCHOBHbBIE IPEJONOXKEHHS THHEHHON TEOPHH IIACTHHOK U
33aBHCHMOCTH [JIfi JehOopMalMii M TEPEMELUEHHN, HECKONBbKO BHAOU3MEHEHHBIE B LIENBIO
3aKIIFOYEHHs B pacyeTe Majoi HavallbHOM KPMBH3HBI, HArOTCA (GOPMYJIbI IHEPIHH U METOX
PuTila OJIS MONy4YeHHMs PelleHud CTATHYECKHX NpOrHOOB M 4acTOT CBOOGOIHBLIX KojebaHuii.
VKa3bIBaeTcs, YTO TPAHHYHOE YCJIOBHE C YACTHBIMH OTPAHUYEHHSMH B ILTOCKOCTH H YacTHOE
pasMellleHHe YKJIAOKH CJIOEB MMEIOT BaXXHOE 3HaYeHHe Ha TOBEAECHHME INIACTHHKM, NPH ydeTe
conpskeHus uaruba ¢ ynnuHHeHueM. [lanee MOKa3bIBAETCA, YTO Mailasi HayaJlbHas KPHMBH3HA
3HAYHTENILHO MOBBLIAET CBOOOAHBIE YACTOTHI M MOXET 3aTEMHATh 3(PGHEKTHI CONPSHKCHMSA
u3ruba ¢ yATHHHEHHEM, BCIIEICTBUE HECHMMETPHYECKUX CII0EB. YKa3biBaeTCs TaKXKe, YTO POCT
[OMEPEYHON KXECTKOCTH B 3aBHCHMOCTH OT KPHBH3HbI 3aBHCHT CHMJIBHO OT HallpaBJICHUS
BOJIOKOH, OPTOTPOIMH ¥ I'PAHHYHBIX YCIIOBHIH.
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APPENDIX
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The following expressions are the elements of the stiffness matrix K given by equation (13).

0 0
Note that ¢,,; = Fr (Dwi)s O = 2 (0.1, ete.

K},

ijk

| =

12 _
Kijkl =

13 _
Kijkl -

22 _
Kijkl =

23 _
Ki=

33 __
Kijkl -
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